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EXECUTIVE SUMMARY

The National Oceanic and Atmospheric Administration installed a Physical Oceanographic Real
Time System (PORTS) in June 1996 in Galveston Bay. Water surface elevation, currents at
prediction depth (4.6m) as well as near-surface and near-bottom temperature and salinity, and
meteorological information are available at six-minute intervals. To complement the PORTS a
nowcast/forecast system is being developed. The hydrodynamic model component is based on the
NOS three-dimensional Galveston Bay hydrodynamic model (Schmalz, 1996) developed in the NOS
Partnership Program to support Differential Global Positioning System hydrographic surveys. Based
on nowcast/forecast requirements the model has been extended to include a bottom emergence/
submergence algorithm, a Flux Corrected Transport (FCT) salinity scheme, and atmospheric heat
flux routines. In addition, the 1/r* interpolation procedure of meteorological fields has been enhanced
by the implementation of a multi-step Barnes (1973) interpolation method.

This refined Bay model was applied to the October 1994 flood of record and demeaned simulated
water levels were in agreement with demeaned observations to order 8 cm in standard deviation
(SD). Initial salinity and temperature fields were based on adjustment of climatology. The adjustment
could only be performed in an average sense due to the lack of observations. The salinity field
adjustment time length is a function of previous freshwater inflow patterns. In the case of the
October 1994 flood, the effect of the initial conditions was removed immediately within a single day
after the flooding. The after flood simulated salinity response exhibited no over- or under-shooting
and was positive definite, and was in excellent agreement with observations indicating the
effectiveness of the FCT scheme in handling the large horizontal salinity gradients.

The refined Bay model was then applied to the January 1995 “Northers”, during which observed
water depths at Round Point went to zero. While simulated water depths remained nonzero,
demeaned simulated water levels were in agreement with demeaned observations to order 8 cm in
SD. Additional hindcast studies are needed to further evaluate the bottom emergence/submergence
scheme and to aid in the potential development of a overland flooding scheme. The errors in the
initial salinity field persisted throughout the simulation period, which represented a period of modest
freshwater inflow.

Both the October 1994 and January 1995 hindcast water temperatures appeared to be order 2 to 3
°C cooler than observations. An area of further research is the incoming solar radiation mechanics
in particular the transmissivity of the earth’s atmosphere.

A water level sensitivity analysis of winds and freshwater inflows was performed using the
Galveston Bay Model. NOS windfield interpolation techniques are consistent with those developed
at Texas A&M University and provide reasonably accurate nowcast windfields; e.g., demeaned water
levels are generated in agreement with demeaned observations in the Upper Bay to order 10 cm in
SD. The pursuit of additional improvements in Bay windfields using local high resolution
atmospheric models is warranted based on the sensitivities shown here. Based on the sensitivity tests
performed, it appears that the Galveston Bay nowcast/forecast system represents an extremely
challenging problem. Accurate subtidal water level forecasts, Bay windfield forecasts, and
streamflow forecasts are all necessary requirements for the system.
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A fine resolution Houston Ship Channel Model was developed and one-way coupled to the
Galveston Bay hindcast model. The two models combined are used to form the initial hydrodynamic
component of an experimental nowcast/forecast system. They were applied using a SST specification
to the April 1996 PORTS beta test period to simulate water levels and currents. Simulated water
temperatures were within 1 to 2 °C RMS of observations. The SST specification appears to be
sufficient for the nowcast/forecast studies, thereby eliminating the need for further calibration of the
heat flux algorithm. Water level standard deviations were order 8 cm. Principal flood directions
errors were order 25 degrees, while current speed errors were order 15 to 25 cm/s in both models.
However, the current speeds are improved in the Channel model above Redfish Bar. There is some
indication that the bathymetry used in the Channel model may be inappropriate through the lower
Bay. The more recent 1988 hydrographic datasets for Galveston Bay should be used to update both
model bathymetries.

Water level errors are summarized in Table 1 and meet the standard deviation target of order 10 cm.
At Galveston Pleasure Pier on the Gulf coast the standard deviation to mean diurnal range ratio was
near 10%. Due to the reduced tidal ranges within the lower and upper Galveston Bay regions, the
ratios approached 20 to 30%.

Prediction depth principal component errors are summarized in Table 2a for directions and in Table
2b for current strengths. Direction errors are order 25 degrees; equal to the target set. RMS error in
current speeds were order 20 cm/s; below the 0.5 kt target. The ratios of the RMS error to mean
diurnal range were from 10 to 25%.

A significant portion of the water level and current errors are in the astronomical tidal component
in both models, based upon the results of the error budget analysis reported here. As a result,
additional experiments should be performed focusing on improving the tidal response. Refined tidal
boundary conditions and further adjustment of bottom friction should be considered. Since the
Galveston Bay Model appears to be damped, an increase of tidal amplitude of order 10 percent may
be investigated in the future. Additional work on specifying the subtidal signal along the Galveston
Bay Model open boundary may also be undertaken. There is some indication that a smoothing of the
subtidal signal would reduce the oscillations in simulated coastal water levels. Within the Houston
Ship Channel Model, a velocity/transport boundary condition might be explored in addition to
further adjustments of the present internal mode radiation scheme.

Of concern is the availability of measurements to assess these three-dimensional models. For water
surface elevation, this may be less of a problem than for currents and density. One approach towards
alleviating this concern would be to broaden the PORTS system philosophy. Several mobile
instrument packs (Mobile-PORTS) might be incorporated to allow for the acquisition of additional
data throughout the system in non realtime. The basic navigational sensors (Navigational-PORTS)
would be stationary and could of course be increased, but the mobile sensors would be used to
continually obtain additional data and to assess future additional navigational sensor sites. As the
model development and PORTS matured, the Mobile-PORTS sensors would either migrate into the
Navigational-PORTS or be discontinued for use elsewhere.
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Table 1. Galveston Bay Model (GBM) and Houston Ship Channel Model (HSCM) Hindcast Water
Surface Elevation Errors. Note the standard deviation refers to the demeaned differences between
observed and simulated six-minute water levels. Mean Diurnal Range is the average difference
between MHHW and MLLW. Average Relative Error as defined by Willmott et al. (1985) ranges
from O to 1, with 0 being no error.

Station Mean Diurnal Standard SD/MDR Average
Name Range (MDR) Deviation (SD) Ratio Relative Error
(cm) (cm) (%) -)
Galveston
Pleasure Pier 67
GBM-1/95 8.5 12.6 0.02
GBM-10/94 7.7 11.5 0.04
GBM- 4/96 9.2 13.7 0.06
Galveston
Pier 21 43
GBM-1/95 6.2 14.4 0.02
GBM-10/94 5.3 12.3 0.03
GBM- 4/96 7.2 16.7 0.06
HSCM-4/96 7.6 17.7 0.06
Port Bolivar 43
GBM-1/95 10.5 244 0.06
GBM-10/94 10.8 25.1 0.11
GBM- 4/96 7.3 17.0 0.06
HSCM-4/96 7.5 17.4 0.06
Eagle Point 30
GBM-1/95 7.6 25.3 0.03
GBM-10/94 8.5 28.3 0.07
GBM- 4/96 4.8 16.0 0.02
HSCM-4/96 4.7 15.7 0.02
Clear Lake 28
GBM-1/95 6.8 24.2 0.02
GBM-10/94 8.1 28.9 0.04
GBM- 4/96 6.9 24.6 0.04
Morgans Point 30
GBM-1/95 7.4 24.6 0.02
GBM-10/94 9.3 31.0 0.04
GBM- 4/96 5.4 18.0 0.02
HSCM-4/96 54 18.0 0.02
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Table 2a. Galveston Bay Model (GBM) and Houston Ship Channel Model (HSCM) Principal Flood
Direction Errors during April 1996.

PORTS Station Observed Model Model - Observed
Principal Flood Principal Flood Principal Flood
Direction (deg T) Direction (deg T) Direction (deg)
Bolivar Roads 322
GBM 342 : 20
HSCM _ 321 -1
Redfish Bar 322
GBM 336 14
HSCM 331 9
Morgans Point 341
GBM 313 -28
HSCM 318 -23

Table 2b. Galveston Bay Model/Houston Ship Channel Model Principal Component Direction
Current Errors during April 1996. Mean diurnal range corresponds to the sum of average maximum
flood and ebb speeds over each tidal cycle. It is estimated as 1.3 times sum of average tidal cycle
flood and ebb speeds. Average Relative Error as defined by Willmott et al. (1985) ranges from O to
1, with 0 being no error.

PORTS Station Mean Diurnal RMS Error RMSE/MDR Average
Start-End Days Range (MDR) (RMSE) Ratio Relative Error
(cm/s) (cm/s) (%) (-)
Bolivar Roads 194
1-10 21.3/27.4 11.0/14.1 0.04/0.08
11-20 21.1/26.1 10.8/13.5 0.04/0.07
21-30 25.7/30.2 13.2/15.6 0.07/0.10
Redfish Bar 130
1-10 13.3/17.0 10.2/13.1 0.04/0.07
11-20 13.8/15.5 10.6/11.9 0.05/0.07
21-28 11.7/13.5 0.9/10.4 0.04/0.06
Morgans Point 66
1-10 17.9/12.7 27.1/19.2 0.39/0.10
11-20 15.9/13.2 24.1/20.0 0.27/0.11
21-30 16.4/14.4 24.8/21.8 0.33/0.15




1. INTRODUCTION

The National Oceanic and Atmospheric Administration installed a Physical Oceanographic Real
Time System (PORTS) patterned after Bethem and Frey (1991) in June 1996 to monitor Galveston
Bay. In the present system, water surface elevation, currents at prediction depth (4.6m) as well as
near-surface and near-bottom temperature and salinity, and meteorological information are available
at six-minute intervals (Appell et al., 1994) at locations shown in PORTS Base Map. To complement
the PORTS a nowcast/forecast system (Parker, 1996) is being developed based on the National
Ocean Service (NOS) Galveston Bay three-dimensional hydrodynamic model (Schmalz, 1996) and
the National Weather Service (NWS) Aviation atmospheric model. To simulate currents within the
Houston Ship Channel (HSC), a finer resolution three-dimensional HSC model has been developed.
The Galveston Bay model is used to provide Bay wide water level and near entrance current
forecasts as well as to directly provide water levels, density, and turbulence quantities to the HSC
model for use in a one-way coupling. Tide gauge (refer to the Galveston Bay Base Map) and current
meter station locations for hindcast assessment are as shown in Tide Gauge and Current Meter Base
Maps, respectively.

To initially determine nowcast/forecast water level requirements, we examined January 1994 -
December 1995 six-minute water level time series at Morgans Point (877-0613, in the upper
Galveston Bay), Galveston Pier 21 (877-1450, in the lower Galveston Bay), and at Galveston
Pleasure Pier (877-1510, nearshore Gulf south of the entrance to Galveston Bay) and June 1994 -
May 1995 six-minute water level time series at Round Point (877-0559, head of Trinity Bay). The
need to extend the NOS Galveston Bay model to include emergence/submergence to account for the
effect of the observed drying of Trinity Bay during strong northerly winds was identified. Mid-depth
salinity measurements obtained from the Texas Water Development Board at Morgans Point and
Bolivar Roads indicated the need for a positive definite flux corrected salinity transport scheme to
treat the observed large horizontal gradients. To utilize potential point meteorological forecasts, a
surface heat flux capab<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>