
PROGRESS REPORT: Unmapped U.S. Waters

Knowledge of the depth, shape, and composition of the seafloor is necessary to explore, characterize, conserve, and manage our coastal and offshore natural resources. The 2020 **National Strategy for Ocean Mapping, Exploring, and Characterizing the United States Exclusive Economic Zone** and the global **Seabed 2030** initiative make comprehensive ocean mapping a priority for the coming decade. This second annual report tracks our progress toward mapping the U.S. Exclusive Economic Zone.

Percent of U.S. waters still unmapped in 2020

All U.S. waters		Total Area = 3,592,	.000 square nautical miles (snm)
	54% 2019 7% 2018 2017		0%
1. Atlantic and Gulf of Mexico			Total Area = 472,200 snm
	43% 2019 48% 2018 49% 2017	41%	
2. Great Lakes			Total Area = 46,600 snm
96% 2017 2018 2019 & 2020			
3. Caribbean*			Total Area = 61,600 snm
	42% 2019 44% 2018 45% 2017	43%	
4. Alaska			Total Area = 1,080,200 snm
73% 2018 74% 2017 74% 2017			
5. Pacific (CA, OR, WA)			Total Area = 239,700 snm
		24% 2019 29% 2017 & 2018	22%
6. Pacific Remote Islands and Hawaii			Total Area = 1,691,700 snm
	50% 2019 53% 2018 55% 2017		

* The Caribbean "lost" 600 snm of bathymetry in 2020 due to a minor correction to remove known bad/poor quality surveys from the calculation.

Mapping the Seafloor

*

Multibeam and LIDAR surveys

by trained hydrographers and other personnel from government, academia, and private sector

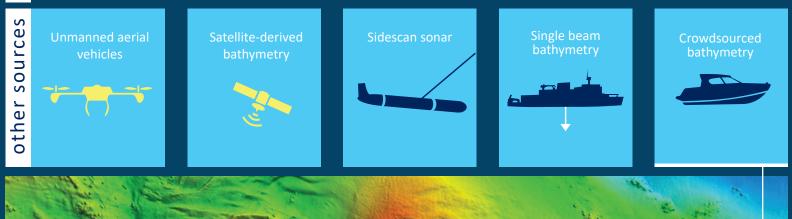
Coastline

of bathymetry

sources

primary

Representing ~0-40 meters water depth, mapping in this area is ideal for aircraft using LIDAR technology and autonomous systems using multibeam sonar technology. Concerns about safe navigation require a high level of data accuracy.


unmanned

Shallow water

Representing ~40-200 meters water depth, mapping this area is ideal for ships using multibeam sonar technology alongside autonomous systems as a force multiplier. Conditions are not usually suitable for aerial survey methods. Concerns about safe navigation require a high level of data accuracy.

Deep water

Representing water depths >200 meters, mapping this area is ideal for ships using multibeam sonar technology. Conditions are not suitable for aerial survey methods. Navigation safety is not a primary concern in this area.

Strategies for Filling Gaps

Partnerships and technology innovations are key to fulfilling seafloor mapping goals. As technology improves, there are two primary ways to contribute (1) participate in U.S. mapping coordination activities, and (2) share your data. Publicly accessible bathymetry benefits numerous communities of users and the coordinated collection of new data promotes the integrated ocean and coastal mapping goal to "map once, use many times." For the latest status on these efforts, visit http://iocm.noaa.gov.

Crowdsourced bathymetry is the collection of depth measurements from vessels with standard navigation instruments during routine maritime operations. It is a powerful source of information that helps to fill gaps where data is sparse, especially in places where government survey vessels do not have the resources to go in the next ten years.