LIDAR BATHYMETRY OVERVIEW & PROCESS & BENEFITS OF A MULTI-SENSOR APPROACH

Presented by: Carol Lockhart | VP & Chief Hydrographer, Woolpert

ARCHITECTURE | ENGINEERING | GEOSPATIAL

Operational Concepts for Bathymetric Lidar

- Consistent swath widths
- More efficient coverage in very shallow water (<5 – 15m)
- Eliminates safety concerns of boat operations in shallow uncharted water
- Can be combined with multibeam for optimal survey results, efficiency & safety

Sample Project >200km²

- Very Shallow Depths (3m on average)
- Understand limitations

Technology	Time to Survey	
Full Coverage Multibeam	1 year	
100% Sidescan Sonar (with singlebeam or striped bathy)	60 days	
Bathy Lidar	2 days	

Bathymetric Lidar Theory

- Frequency Doubled ND:YAG Class IV Laser output <u>or</u> Independent Lasers:
 - Infrared (1064nm)
 - Visible Green (532nm)
- Laser fires against a scanning mirror or circular palmer scanner to create a swath of points.

Bathymetric Lidar Theory

Conceptual Green Waveform

System Flavors

System Type	Size & Weight	System Characteristics	Depth Penetration	Data Density
Lower Power Laser	Smaller, Lighter	Smaller Footprint Size / Beam Divergence (~0.5 - 1m)	Less Depth Penetration	Denser Data
High Power System	Larger, Heavier	Larger Footprint Size / Beam Divergence ** (~2m)	Greater Depth Penetration	Less Dense Data
Modular System	Multiple Lasers – low and high power		Greater Depth Penetration	Denser data in shallow plus less dense data deeper

****** Necessary to make higher power systems eye safe

Arete PILLS: Pushbroom Imaging Lidar for Littoral Surveillance Fugro RAMMS: Rapid Airborne Multibeam Mapping System

- Pulsed laser fan beam and a streak tube imaging lidar (STIL) receiver
- For each laser pulse, maps out an image of objects within the fan beam
- Solid state system
- Low SWaP
 - Low Size, Weight and Power
 - UAV Deployable
 - Recent test in Pensacola, FL
 - U.S. Navy's Office of Naval Research (ONR)
 - Schiebel CAMCOPTER S-100
- 27,000 range observations per second
- 3x Secchi depth penetration

<u>Rapid Airborne Multibeam Mapping System</u> OnePass Topo | Bathy | Ortho-Imagery

IHO Order-1 Compliant DeepChannel, 3x Secchi Pen. > 2Pts./m2 290m Swath 3x Global Systems Active

EPP-10

Reduced form-factor offers minimized Carbon-Footprint in operations (& allows UAS deployment)

Bathy Lidar: Future

Woolpert's Maritime Research Lab through contracts with government and industry clients is working to:

- Increase efficiency and productivity
- Implement off the shelf technology to:
 - Model surface topography
 - Improve geometry
 - Increased spatial resolution
- Real-time Total Propagated Uncertainty (TPU)

Operational Considerations: Depth 'v' Water Clarity

- Depth penetration depends on:
 - Water Clarity / Turbidity
 - Seasonal
 - Daily (tides/currents)
 - Seafloor reflectance
 - Bed type
 - Vegetation

Expected Depth of Penetration Low Power: 1 to 2 x Secchi Depth High Power: 3 to 4 x Secchi Depth

Additional Considerations

- \circ Weather
 - Temperature, Rain, Cloud Ceiling, Sea State
- Flight Logistics
 - Air Traffic/ Restricted Airspace / Flight Permits
- Positioning Plan
 - GNSS (Singlebase, SmartBASE, PPP)
 - Tides (gauge installation?)

Process & Benefits of a Multi-Sensor Approach

SDB, Lidar and MBES

Project Management Overview

Phase 1: Satellite Derived Bathymetry (SDB)

- Review > 350,000 sq.. km using 15m resolution imagery
- 52 Areas of Interest identified
- Over 6,000 sq.. km of SDB using 2m resolution imagery

Charting products containing SDB data from this project have already been published

Phase 2: Topo-Bathymetric Lidar

• Chiroptera 4X

- \circ 400kHz Topo
- \circ 140kHz bathy
- 80MP RCD30 RGBN Camera
- 635 sq. km of topo-bathy lidar data
 7395 flight line km
 - 9% reflights, 200% Coverage
- Hydrographic Object Detection to 20m
- Max Depth = 47m

Phase 3: Multibeam Echosounder (MBES)

- 32m Survey Vessel & 8m USV (iXBlue DriX)
 - $\circ~$ Identical Survey Suites
 - 200kHz Kongsberg EM2040C MBES
- 590 sq. km of MBES data
 7450 survey line km (4022 nautical miles)
- 20m to 400m depths

Lidar Survey Refinement: Area Removal

Prior to any Project Phases

- Antiope Reef targeted for lidar
- 180km from Niue (aircraft base)
- Appeared as large area on chart

Lidar Survey Refinement: Area Removal

After SDB Review

- Small Area 250m x 350m
- Not significant for Navigation
- Lidar not acquired

Lidar Survey Area Refinement: Area Reduction

Beveridge Reef

- SDB and Lidar Surveys
- Reef provides a safe haven for small vessels
- Allow technology comparison
- Add charting confidence

Lidar Survey Area Refinement: Area Adjustment/Addition

Lidar Survey Area Refinement: Area Adjustment/Addition

Multibeam Survey Area Refinement

Multibeam Risk Management & Efficiency

Lidar coverage used during MBES acquisition:

- Confidence for 24/7 MBES ops
- Efficiency around reefs

Multibeam Risk Management & Efficiency

Lidar coverage in shallow complex seabed significantly reduced risk to the multibeam vessel survey team.

MBES work in this environment is:

- high risk, high consequences
- extremely time consuming
- costly

Elevation Model Colored by RCD30 Imagery

Benefits of a Multi-Sensor Approach: SDB

- Vastly more efficient coverage
- More economical (comparatively)
- Plan & prioritize future surveys based on real modern data
- Effective at detecting shoals
- Excellent choice for very remote locations
- Very low risk, high safety factor • No boots on the ground

Benefits of a Multi-Sensor Approach: Topo-Bathy Lidar

- More efficient coverage
- More economical than vessel-based surveys
- Increase safety and efficiency of vesselbased surveys
- Increased resolution versus SDB
- Excellent choice for remote locations
- Multi-Use Dataset: Topo, Bathy, Imagery, Reflectance for Habitat, Land Cover Analysis, etc...

Benefits of a Multi-Sensor Approach: MBES

- Higher resolution over other technology
- Higher accuracy achievable (dependent on systems, users, location, etc..)
- Multi-Use Dataset: Bathy, Backscatter for Geology and Habitat, etc...
- Full depth ranges possible
- USV technology is an effective and efficient force multiplier.

Multi-Sensor Approach Summary

Right Tool – Right Time – Right Location

Survey more efficiently and effectively Significantly more coverage than using a single sensor Full coverage of project area possible

Client and contractor flexibility to adapt to changes Good coordination and teamwork needed between each phase

Thank You

Carol Lockhart

Carol.lockhart@woolpert.com

