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Physical Processes of
Hurricane Intensity Change

Motivation
Improvements in intensity forecasts lagging behind those of
track
Understanding tropical cyclone intensity is a multi-scale
challenge

Tropical Cyclone Intensity Change (surrounding environment)
Rapid Intensification
Inner Core SST Responses
SST & Ocean Heat Content (Aircraft Buoy Deployments)
Saharan Air Layer (i.e. Saharan dust storms)

Tropical Cyclone Intensity Change (inner core processes)
Eyewall replacement cycles
Eye-Eyewall mixing



Rapid Intensity Changes

Greatest forecast challenge for hurricane forecasters
83% of major hurricanes have at least one RI event

Rapid Intensity Predictors

1)  Vertical wind shear

2) Upper-level divergence (200 hPa)

3) Intensity trend (previous 24-hr)

4) Storm Symmetry (GOES satellite)

5) % area with deep convection (GOES satellite)
6) Mid-level humidity

7) Potential Intensity (how close to the theoretical max intensity)



Effects of Vertical Wind Shear on Atlantic Hurricanes

WEAK SHEAR => FAVORABLE STRONG SHEAR => UNFAVORABLE

Vertical wind shear either

helps a vertically coherent
storm vortex to develop or
hinders it from doing so, ®
depending on its magnitude. low clouds




Deployments of Buoy Drifter Arrays
Main Science Objective:
Improve our understanding of the 3-dimensional ocean response to TCs

Storm shown at NHC prediction for 8/19 14002

26°N

Drifting buoy array
deployed in front of
{ major Hurricane
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Top: Sea surface lemperalure (shading 92) and winds (arrows)
measured by the hurricane driffer array at top.  Bofforn: subsurface
termperatures af a depth of 100m.




NRL Satellite Melenrnlnglcal Apps
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The Saharan Air Layer (Saharan Dust Storms)

Main Science Objectives:
Improve our understanding of how the SAL's dry air, mid-level easterly jet, and suspended
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Hurricane data problem: Hurricanes were hardly detected
over the open ocean before the era of satellite technology
(around the mid-1960s) & aircraft reconnaissance (around
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Climate and Atlantic Hurricane Activity

Hurricane Frances
August 23 — September 6

Hurvicane Ivan
September2 — 17
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GLOBAL WARMING

2004 & 2005 - record
number of hurricanes

and record number of
U.S. landfalls

Many scientists and
The media linked the
Increase to global
Warming

However...

2006 & 2007 - were
relatively quiet years



Difference from 1961-1990
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Sea surface temperature and sea level changes
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Global ocean trends 1993-2006

Sea surface temperature

NH = 2.3°C/dec
SH =-0.04°C/dec
Global = 0.14°C/dec

S5T trend (°C decade™")

Sea height

NH = 0.6mm/yr
SH = 2.3mm/yr
Global = 1.6mm/yr

SHA trend (cm decade™)

Eddy kinetic energy

NH = 0.82 cm?s-?/yr
SH = 0.66 cm?s-?/yr
Global = 0.74 cm?s-2/yr
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Global ocean trends 1993-2006

Heat storage mixed layer depth
(XBTs + Argo)
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As the global ocean is warmed up, the vertical wind
shear in the hurricane Main Development Region is
Increased.

Regression of vertical wind shear (June-November) onto global warming index
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Global Ocean Warming refers to an average over the whole globe,
not locally. Three tropical oceans compete with one another for
affecting Atlantic hurricanes: Atlantic, Pacific, and Indian Oceans



Number of Hurricanes

Given hurricane data problem, the most reliable hurricane
measurement over the long term is U.S. landfalling hurricanes.

US Landfalling Hurricanes
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|t shows a weak
downward trend.

- eHowever, trend is

robust because it
IS independent of
the beginning of
linear fit as long as
the fitted data
cover at least a full
cycle of AMO.

- et shows an

upward trend from
the 1970s
because the
period of 1970-
2006 is from cool
(1970-90) to warm
(1995-2006) AMO
phases.



Climate, ocean variability and its influence on the climate

and weather of the surrounding continents
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Global warming and U.S. landfalling hurricanes.
Atlantic warm pool (AWP) and Atlantic hurricane activity.



Atlantic Ocean Variability Important to Summer Weather in
Eastern U.S. Including Hurricanes

¢ ENSO impacts climate mainly in winter; we need a value-added
paradigm for summer climate prediction, especially for rainfall in
the eastern US, and for Atlantic hurricanes

¢ The Indo-Pacific and Atlantic compete with each other and the
atmosphere responds to inter-basin anomalies. We can no longer
afford to make projections based only on the Pacific

¢ Warm pool size is an expression of SST anomalies, but weighted
toward regions of maximum SST > 28°C where deep convective
heating occurs -- also a good match for tropical cyclogenesis

¢ Applicability to summer precipitation and hurricanes



Atlantic Warm Pool (AWP) and Atlantic Hurricanes

Hurricane composites for large & small AWPs Why does the AWP affect hurricanes?
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AWP acts as a link between AMO & TCs:
» About 80%, large (small) AWPs occur
1 _ during warm (cool) phases of AMO.
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NOAA Atlantic Oceanographic & Meteorological Laboratory



Impact of the AWP on Atlantic Hurricanes: via Wind Shear

(a) CTRL (b) LAWP — SAWP
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The AWP reduces lower tropospheric easterly flow and upper
tropospheric westerly flow, resulting in a reduction of the vertical
wind shear in the MDR that favors Atlantic hurricanes. This is
because the atmospheric response to the AWP’s heating is
baroclinic (Gill 1980).

NOAA Atlantic Oceanographic & Meteorological Laboratory



Impact of the AWP on Atlantic Hurricanes: via Atmos. Instability

Convective Available Potential Energy (CAPE)
he higher the CAPE value, the more energy available to foster storm growi

(a) CTRL (b) LAWP — SAWP
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The orientation lies along
the track of historical

A large AWP tends to increase CAPE due tohH%re'Cﬁ’l}%er%ased near-
surface air temperature and water vapor content, which provides
the fuel for moist convection and thus increases Atlantic
hurricane activity,



Summary

Global warming is associated with a secular increase of vertical
wind shear in the MDR which coincides with a downward trend
In U.S. landfalling hurricanes.

Whether future global warming increases Atlantic hurricane
activity will depend on relative warming role of the three tropical
oceans.

The AWP acts as a link between the AMO and
hurricanes/climate response.

Large (small) AWP reduces (enhances) vertical wind shear in
the MDR and increases (decreases) the moist static instability of
the troposphere, both of which favor (disfavor) Atlantic TC
activity.

Saharan air layer can act to suppress TC intensity.



AOML research is influencing water planning

Statute-mandated 20-year water plans every 5 years

Water Management Districts Map
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A decision support tool for long-term planning

Let t, = years since last shift; t, = years until the next shift
We now compute the conditional probability for t, given t;

Risk of Future shift (%)
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Questions?

judy.gray@noaa.gov

Atlantic Oceanographic #
& Meteorological Laboratory ([P

&

National Oceanic & Atmospheric Administration



Background Slides



Eye-Eyewall Mixing Processes
Main Science Objective:
Understand and describe the small-scale features found in tropical cyclone
eyewalls and their effect on intensity & landfall impacts
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Western Hemisphere Warm Pool
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ECOSYSTEM CONNECTIVITY

Elizabeth Johns

Scientists from AOML are working collaboratively with scientists from SEFSC
to determine the degree of physical and biological connectivity of the coral
reefs of NOAA's Florida Keys National Marine Sanctuary (FKNMS) with

upstream coral reef ecosystems

 The FKNMS is strongly linked by ocean currents to waters of the Yucatan

Peninsula

» Eddies and gyres are important in establishing the time and length scales of

the physical connectivity

 This physical connectivity between
geographically separated spawning grounds

may have an important influence on the degree o

of biological connectivity between larval reef
species populations

» The project supports NOAA's 5-year
Ecosystem Mission Goal to Protect, Restore
and Manage Use of Coastal and Ocean
Resources.

OCEAN CHEMISTRY DIVISION John R. Proni
AOML Program Review, March 18-20, 2008

Drifter Trajectories from the
Gordon Gunter Cruise, March 2006
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Science

The Florida Area Coastal
Environment (FACE) Program
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OCEAN CHEMISTRY DIVISION John R. Proni
AOML Program Review, March 18-20, 2008




FACE

FACE Mission

FACE is a multi-agency program
including federal, state, local
governments, and water and sewer
authorities.

* Provide scientific information for
management decision-making

* Develop a multi-decadal database on
coastal environmental parameters

« Communicate results to the general
public.

FACE Approach

» Quantify nutrient and microbiological

sources
» Determine natural (background)
concentrations

» Determine potential effects of the
anthropogenic substances

OCEAN CHEMISTRY DIVISION John R. Proni
AOML Program Review, March 18-20, 2008

Sources of Nutrients in the Ocean
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FACE-2

Field Program

* Tracer Experiments at Inlets and Outfalls

» Water quality monitoring programs
* Inlet Characterization

* Ocean Current measurements

* Microbiology investigations

» Acoustic backscatter profiles

« Stable isotope studies (°N, 13C)

2 m INCOMING TIDE
g B OUTGOING TIDE
Q
511 B ‘
2 & @ --"’ s, ]
& T .
& & @.r‘ g \‘F & #‘9 & &
”d)»""‘ Ed ﬁﬁ’ ¢ ¢ o
& & & &
& & e <« & &
éﬁ & & < ¢
& &
il

Microbiology of Boynton Inlet
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Stable Isotope analysis
of TWWP plume water
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OCEAN CHEMISTRY DIVISION John R. Proni
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